MinION Analysis and Reference Consortium: Phase 2 data

نویسندگان

  • Mircea Cretu Stancu
  • Martin C. Frith
  • Lisa Cohen
چکیده

Background: Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of K-12 using the R9.0 chemistry, Escherichia coli comparing the results with the older R7.3 chemistry. Methods: We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Results: Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional (“2D”) N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of “pass” template reads from 1-dimensional (“1D”) experiments were mappable and ~97% from 2D experiments. The median 1* 2* 3* 4,5*

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MinION Analysis and Reference Consortium: Phase 1 data release and analysis

The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore Technologies™ in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was for...

متن کامل

MinION Analysis and Reference Consortium: Phase 1 data

The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinIONTM Access Programme (MAP) was initiated by Oxford Nanopore TechnologiesTM in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was f...

متن کامل

MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry

BACKGROUND Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Es...

متن کامل

Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and MinION/Illumina hybrid data assembly approaches

This study aimed to assess the feasibility of using the Oxford Nanopore Technologies (ONT) MinION long-read sequencer in reconstructing fully closed plasmid sequences from eight Enterobacteriaceae isolates of six different species with plasmid populations of varying complexity. Species represented were Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, Enterobacter cloacae, Serratia...

متن کامل

A first look at the Oxford Nanopore MinION sequencer.

Oxford Nanopore's third-generation single-molecule sequencing platform promises to decrease costs for reagents and instrumentation. After a 2-year hiatus following the initial announcement, the first devices have been released as part of an early access program. We explore the performance of this platform by resequencing the lambda phage genome, and amplicons from a snake venom gland transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017